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Statistical Mechanics of Nonlinear Wave Equations. 
3. Metric Transitivity for Hyperbolic Sine-Gordon 
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McKean and Vaninsky proved that the canonical measure e -n  d~Q d~P based 
upon the Hamiltonian H= ~ [�89 �89 F(Q)] dx of the wave equation 
02Q/Ot 2 - a2Q/Ox 2 +f(Q) = 0 with restoring force f(Q) = F'(Q) is preserved by 
the associated flow of Q and P= Q', and they conjectured that metric tran- 
sitivity prevails, always on the whole line, and likewise on the circle unless 
f(Q) = Q or f (Q)= sh Q. Here, the metric transitivity is proved for the whole 
line in the second case. The proof employs the beautiful "d'Alembert formula" 
of Krichever. 

KEY WORDS: Partial differential equations; statistical mechanics; ergodic 
theory. 

McKean  and Vaninsky tS) discussed the petit  ensemble for the nonl inear  
wave equat ion O2Q/Ot2-02Q/Ox 2 + f ( Q ) =  o, f ( Q )  being an odd  restoring 
force, i.e., it is of  the same signature as Q. The da ta  Q and P = Q' ,  taken 
at t---0, are dis t r ibuted according to the Gibbs ian  canonical  measure 

e-tO d ~ p  d ~ Q  = e - t  I /2 ) J  [p2 +(Q,)2] d ~  P d ~  Q x e - I  FtQ) 

in which F(Q) is the pr imit ive o f f ( Q )  and H is the Hami l ton ian  i j [ p 2 +  
(Q,)2] + ~ F ( Q )  of the flow 

Q ' =  P = OH/OP, P ' =  Q" - f ( Q )  = - O H / O Q  

The meaning of the measure  is easily explained. The factor 
[exp t - t  1/211 e ' l  ] d ~ P  states that  P is white noise. As to 
{ expt-1~/21IIQ'~21} d ~ Q ,  think first of the circle 0 ~< x < L, i.e., let Q (and 
also P)  be of  per iod L. Then {exp t-t~/2~stQ')21} d ~ Q  signifies that  Q is 
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"circular" Brownian motion, i.e., it is the standard Brownian motion 
starting at Q(0)=h ,  conditioned so as to be periodic [Q(L)=h] ,  the 
common level h being distributed over the line by the measure dh. The 
infinite total mass of this measure is tempered by the factor e - i  ~Q~: in fact, 
if ~ e -FO') dh < ov as for f ( Q )  = sh Q, then 

Z = f e -(n/2) l (Q'? e - I  F~Q) d ~ . Q  < oo 

The distribution of Q may be made more transparent by a little trick: 
F (oz )=  + ~ ,  so - (1 /2)dZ/dQ2+F(Q) has positive ground state r with 

~2(0) dQ = 1 and eigenvalue A, in terms of which F - A  = (1/2)(m' + m 2) 
with m=r Now compute, by rules of the Brownian differential 
calculus, the (vanishing) integral of d lg ~b[ Q(x)] over one period 0 ~< x < L: 
one has d lg ~k = m dQ + (1/2) m'(dQ) 2 and (dQ) 2 = dx, whence 

O = f  mdQ+�89  f m '  d x = f m d Q - � 8 9  f m2cLx "+ f F d x - - A L  

and 

e -1112) [ I Q')" e -I Ft Q) = e -~ 1/2) I ( Q ' ) 2 e l  .,~ Q) dQ - t 112) [ m21 Q) dx 

up to the unimportant factor exp(AL), which may be ignored. Here, one 
recognizes the law of the (circular) diffusion with infinitesimal operator 

= (1/2)02/OQ 2 +re(Q)O/OQ in which the odd function re(Q) acts as a 
restoring drift, of signature opposite to that of Q, and it comes as no sur- 
prise that, as L'f  o% this law tends to that of the stationary diffusion with 
the same infinitesimal operator and stationary density ~,2(Q). It is in these 
ensembles that McKean and Vaninsky 15) established the existence of the 
flow and the invariance of the measure under it. They conjectured that the 
flow is metrically transitive: always in the case of the line, and likewise for 
the circle unless f ( Q ) = m 2 Q  or f (Q)=ash(bQ) ,  i.e., except for Klein/ 
sinh-Gordon. The conjecture has a simple proof for sinh-Gordon on R. 
This is reported below, with further comments on Klein-Gordon. The rest 
is still open. 

Step 1 notes that, for any wave equation, the data Q+ = [ Q ( _ x ,  x): 
x ~ R] on the characteristics t - - + x  determine the whole solution, as is 
well known for classical solutions and carries over to the unpleasant data 
H ~ x H -  1 of the petit ensemble. 

Step2 is to observe that Q+ and Q_ are copies of the horizontal 
diffusion Qo = [Q(0, x): xell~] regulated by the infinitesimal operator (~. 
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/ 
Fig. 1. 

The same is true for any line t = a + bx making an angle of ~<45 ~ with the 
horizontal and has nothing to do with f ( Q ) =  sh Q, as will appear from the 
proof. 

Proof The petit ensemble is invariant under space/time translations, 
so [Q+(x):  x<~xo], [Q+(x):  x>~xo], and Q+(xo) stand in the same 
statistical relation as [Q+(x):  x~<0], [Q+(x):  x>~0], and Q+(0). But of 
these last three, the first/second is measurable over the field of [Po(x), Qo(x): 
x~<0], resp., [Po(X), Qo(x): x/> 0], so they are independent, conditional 
upon Q+(0) (see Fig. 1), with the result that Q+ itself is a (stationary) 
diffusion. Now dQo=dB+m(Qo) dx with a free Brownian motion B 
starting at B(0)=  0, so, for x + 0, 2 

o+(x) = Q+10)+ �89 Qol2.,-)-�89 I~ -~ eo(X')~x'+~ ~ sh Q dt' dx' 

2 x  2 x  

=Q+(O)+�89189 fs Po(x')dx' +�89 I s m(Qo) dx' +O(x 2) 

= Q+(0) + B + ( x )  +m[Q+(O)]x+o(x) 

in which the free Brownian motion B+(x) = (1/2) B(2x) + (1/2) fz~ p is Jo o 
independent of the past Q+(x'): x' ~<0; compare Fig. 1. The rest will be 
plain. 

Step 3 recalls the analog for sinh-Gordon of d'Alembert's formula 
for the free wave equation; it is due to Krichever. ~3) We express 

-'A signifies the triangle with vertices 00, x x ,  2x0. 
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632Q/6~t 2 - 632Q/63x 2 + sh Q = 0 in light-cone coordinates ~ = �89 + t) and 
r / = � 8 9  It takes the form 02Q/O~Orl=4sh Q, which is equivalent to 
the compatibility 3 of 

=1o 2 -~-~0-' 20,(10 _~)+()0_1 lo)and ~O-'=(eOe ).; Q) 
for the function ~O: (~, I/, 2) ---, SL(2, C) specified by the condition ~k = 1 at 

= q  = 0. Here ~k is an analytic function of 2 in the twice-punctured sphere 
P - 0 -  co. Write ~b = RotS~, R o being analytic in P - oo, with value (~. o) 
at ) .=0,  and S~  analytic in P - 0 ,  with value (; .') at 2 =  co. This fac- 
torization can be made in one and only one way; also, both pieces have 
determinant 1, necessarily. What  is remarkable is that S~  is independent of 
~/: indeed, 4 

OS~ S2ol = ORo R_ l +R ~ ( 0 ).eQ'x) Ro-1 
&l &l o e -  Q 0 / 

is analytic on the whole sphere P: as such, it is constant as regards ). e C 
and reduces to (o o) at 0 and to (~ **) at co, so it must vanish identically. 
So~ is now determined, from Q+ alone, by the rule 

d 1 
--~xSoo(x,O)S~l(x,O)=-~Q'+(x)(; _~)-t-() .0_ 1 10) 

The game can be played the other way around: write ~ = R~So, So being 
analytic in P -  co and R~  analytic in P -  0, with the same normalizations 
at 0 and co as before. Now 5 

OSo [lOO_ 
O~ So '= O~ RL'+Ro~I20~(~ _01)+(20- ,  10)]R2o' 

vanishes for like reasons, and So is determined, from Q_ alone, by the rule 

d so(O,x) Sfft(O,x)=(eO_l 2 ; )  with e=exp[Q_(x)] 

Also, 

O Ro~ -O~-=Roo[~Q'(10 _~)+(00 ~)] at 2=oo with Q'=-~ 
3 This means 02r Or/= 82r 
4 Use 0r r = (~-o o,~.). 

- I  / s Use 0~10~ r - ~_ OQIO~(~ o,~.). 
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so knowledge of Ro~ at oo permits one to recover the full solution Q(t, x) 
from Q_(x) since 21grll  + Q does not depend upon ~. This is not all! 
Soo So  t= RoRL l and the left side determines both factors on the right side 
separately, 6 and so also Q from Q_ and Q+. This is "d'Alembert's 
formula," reducing the solution of 02Q/Ot2-O2Q/Ox2+sh Q = 0  to (a) 
determining So~/So from Q+/Q_, (b) refactoring S ~ S o  I as RoR~ l, 
and (c) extracting Q from Ro~ and Q_. 

W a r n i n g .  The determination of So~ from Q+ assumes that Q'+ 
exists, which is not true in the the petit ensemble. This is easy to fix: dQ + = 
dB + m(Q + ) dx with a standard Brownian motion B, and So~ = So~(x, 0) is 
the nonanticipating solution of 

l('0 ( '0) o Soo= 1 + ~  _ So~dQ++ 20_1 Soodx' 

So dB being interpreted with dB centered, i.e., with 

So~ dB= lim ~ So~ B --B 
n "f o~ k/n <~ x 

= l i m  )-'. Soo B - B  + ~  I" S~o 
nT~176  k/n<~x 

Line 2 is the "nonanticipating" mode of writing with the differential in the 
future, so to say, and correction Z(o~ i -l~ f" So~ arising from the rule 
(dB)2= dx; see McKean (41 for such matters. So~ is determined in this way, 
with probability I in the petit ensemble, and the "d'Alembert solution" so 
produced solves the wave equation in its customary integral form: 

f .r + t f zl Q ( t , x ) = � 8 9  1 Po(x')dx'+�89 shQdt 'dx '  
x - - I  

that is the best one could expect. 

Step4. Now subject the random field [Q(t, x): (t, x)@R 2] to the ver- 
tical shift Q(t, x) ---, Q(t + T, x). Then Soo ~ So~(o+ T/2) S ~ ( T / 2 )  =_ S~2, 7 
and So ~ So(~ - T/2) Sol(  - T/2) - So r/2. But S ~  2, resp. So r/2' is deter- 
mined by Q+( .  + T/2), resp. Q _ ( o -  T/2). The latter shifts are, individually, 
metrically transitive and even mixing--and more: Q+(x+T/2)  and 
Q _ ( x -  T/2) are independent, conditional on Q(0), as soon as T/2 >1 Ixl, as 

6Us e Ro=(lo o) at 0 and R~=(~ :) at co. 
7 The normalization S~(0) = 1 must be respected. 
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can be seen from Fig. 1. Any residual dependence due to Q(0) washes out 
for TI" ~ ,  so that the joint shift, and also the flow So~So ]~-ooo~r/2~-r/2~o , is 
mixing, too, and Q inherits this property via d'Alembert's formula. The 
proof is finished. 

Klein-Gordon (with mass m) illustrates some finer points which have 
not been verified otherwise, even for sinh-Gordon. Now O Q + rn2Q = O, P 
is white, as before, and Q is the (Gaussian) Ornstein-Uhlenbeck process 
with mass m, infinitesimal operator (1/2) 02/aQ 2 - mQ O/aQ, and correla- 
tion ( 2 m ) - l e x p ( - m  Ixl). The correlation of the field Q(t ,x)  is easily 
found from 

Q( t , x )=cos ( tA )  Qo(x)+sin( tA)  A-~Po(x) with A = ( m 2 - - D 2 )  1/2 

A-JPo is an independent copy of Q0, sos 

E[ Q(t, x) Q(0)] = [A-2 cos tA](x,  O) 

1 f cos  t (k2+m2) t/2 
e( - l )la kX dk  

= 2---~ J k 2 + m 2 

e - m  [xl 1 rid 
2 m  2m/,,i.,:1 J ~  - x2]  1/2) dt '  

with the understanding that the integral is present only if Ix[ < [tl; in par- 
ticular, it is absent if t = +_cx and [c[ ~< 1, confirming the result of step 2. 
The process Q, = Q(o, 0) is of special interestg: 

1 1 Jo(mt') dt' =-1 o~ cos tk dk 
E [ Q T Q Q r ] = 2 m  2m ~ ( k 2 - m 2 )  1/2 k 

from which follows the curious fact that the past QT(t): t ~< 0 determines the 
future QT(t): t~>0 since the spectral weight omits a band; also, mixing 
follows from the vanishing of E[Qr | Qr] for t 1" or. ~~ Pt = Q'(', 0) is an 
independent copy o f ( - D  2 - m  2) QT and shares its determinism/mixing in 
view of 

1 fo~, dk 
E [ P T |  r ] = - j .  costk(k2-m~-)t/2--~ 

/l" 

8J  0 is the standard Bessel function; see Bateman [ref. l, 26(30)] for the necessary 
transform. 

9 Q |  means Q(tt) Q(t2); also t =  [t , . - td.  
io See, e.g., Dym and McKean ~2) for such matters. 



Nonl inear Wave Equations 737 

It is noteworthy that the "vertical" ensemble for Pr and QT so 
produced is invariant under the horizontal flow despite the fact that 
f(Q) =mZQ now acts as a repulsive force: one does not expect a finite 
invariant measure then. The mystery is resolved by noting that the vertical 
ensemble is not of Gibbs type, i.e., unlike the "horizontal" ensemble, it has 
no mechanical interpretation. 
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